COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of genome-wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure.

BACKGROUND: Arsenic is a well-documented carcinogen of human urothelial carcinoma (UC) with incompletely understood mechanisms.

OBJECTIVES: This study aimed to compare the genome-wide DNA methylation profiles of arsenic-induced UC (AsUC) and non-arsenic-induced UC (Non-AsUC), and to assess associations between site-specific methylation levels and cumulative arsenic exposure.

METHODS: Genome-wide DNA methylation profiles in 14 AsUC and 14 non-AsUC were analyzed by Illumina Infinium methylation27 BeadChip and validated by bisulfite pyrosequencing. Mean methylation levels (β¯) in AsUC and non-AsUC were compared by their ratio (β¯ ratio) and difference (Δβ¯). Associations between site-specific methylation levels in UC and cumulative arsenic exposure were examined.

RESULTS: Among 27,578 methylation sites analyzed, 231 sites had β¯ ratio >2 or <0.5 and 45 sites had Δβ¯ >0.2 or <-0.2. There were 13 sites showing statistically significant (q<0.05) differences in β¯ between AsUC and non-AsUC including 12 hypermethylation sites in AsUC and only one hypermethylation site in non-AsUC. Significant associations between cumulative arsenic exposure and DNA methylation levels of 28 patients were observed in nine CpG sites of nine gens including PDGFD (Spearman rank correlation, 0.54), CTNNA2 (0.48), KCNK17 (0.52), PCDHB2 (0.57), ZNF132 (0.48), DCDC2 (0.48), KLK7 (0.48), FBXO39 (0.49), and NPY2R (0.45). These associations remained statistically significant for CpG sites in CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 in 20 non-smoking women after adjustment for tumor stage and age.

CONCLUSIONS: Significant associations between cumulative arsenic exposure and methylation level of CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 were found in smoking-unrelated urothelial carcinoma. Arsenic exposure may cause urothelial carcinomas through the hypermethylation of genes involved in cell adhesion, proteolysis, transcriptional regulation, neuronal pathway, and ion transport. The findings of this study, which are limited by its small sample size and moderate dose-response relation, remain to be validated by further studies with large sample sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app