JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Stimulation of denervated muscle promotes selective reinnervation, prevents synkinesis, and restores function.

Laryngoscope 2014 May
OBJECTIVES/HYPOTHESIS: Previously, electrical stimulation of denervated canine laryngeal muscle was shown to promote reinnervation by native over foreign motoneurons. The goal of this study was to assess the effect of different stimulus paradigms on reinnervation quality and functional recovery.

STUDY DESIGN: A prospective study of six canines over 8 to 20 months.

METHODS: A clinical model of laryngeal paralysis was used, where recurrent laryngeal nerves of the animals were sectioned and ventilation compromised. The abductor, posterior cricoarytenoid (PCA) muscles were implanted bilaterally with electrodes from an implantable pulse generator. Animals were randomly assigned to three groups to assess the effect of different stimulus paradigms: 1) 40 pulses per second (pps) train, 2) 10 pps train, 3) no stimulation. Spontaneous vocal fold movement was measured endoscopically during hypercapnia. Exercise tolerance was measured on a treadmill using pulse oximetry. In the terminal session, electromyography (EMG) potentials were recorded during superior laryngeal nerve stimulation to index foreign reinnervation of the PCA by reflex glottic closure (RGC) motoneurons.

RESULTS: After reinnervation started, nonstimulated and stimulated 40 pps animals displayed paradoxical closure of the glottis during hypercapnia and severely decreased exercise tolerance due to faulty reinnervation. In contrast, stimulated 10 pps animals displayed minimal paradoxical closure and normal exercise tolerance (12 minutes up to 8 mph). EMG findings in this group demonstrated significantly less PCA reinnervation by foreign RGC motoneurons.

CONCLUSION: PCA stimulation with low frequency reduced synkinetic reinnervation by foreign RGC motoneurons. Paradoxical closure of the glottis with inspiration was reduced and exercise tolerance restored to normal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app