Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Unraveling associations between cyanobacteria blooms and in-lake environmental conditions in Missisquoi Bay, Lake Champlain, USA, using a modified self-organizing map.

Exploratory data analysis on physical, chemical, and biological data from sediments and water in Lake Champlain reveals a strong relationship between cyanobacteria, sediment anoxia, and the ratio of dissolved nitrogen to soluble reactive phosphorus. Physical, chemical, and biological parameters of lake sediment and water were measured between 2007 and 2009. Cluster analysis using a self-organizing artificial neural network, expert opinion, and discriminant analysis separated the data set into no-bloom and bloom groups. Clustering was based on similarities in water and sediment chemistry and non-cyanobacteria phytoplankton abundance. Our analysis focused on the contribution of individual parameters to discriminate between no-bloom and bloom groupings. Application to a second, more spatially diverse data set, revealed similar no-bloom and bloom discrimination, yet a few samples possess all the physicochemical characteristics of a bloom without the high cyanobacteria cell counts, suggesting that while specific environmental conditions can support a bloom, another environmental trigger may be required to initiate the bloom. Results highlight the conditions coincident with cyanobacteria blooms in Missisquoi Bay of Lake Champlain and indicate additional data are needed to identify possible ecological contributors to bloom initiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app