JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents.

To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app