Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Compressing movement information via principal components analysis (PCA): contrasting outcomes from the time and frequency domains.

PCA has become an increasingly used analysis technique in the movement domain to reveal patterns in data of various kinds (e.g., kinematics, kinetics, EEG, EMG) and to compress the dimension of the multivariate data set recorded. It appears that virtually all movement related PCA analyses have, however, been conducted in the time domain (PCAt). This standard approach can be biased when there are lead-lag (phase-related) properties to the multivariate time series data. Here we show through theoretical derivation and analysis of simulated and experimental postural kinematics data sets that PCAt and, PCA in the frequency domain (PCAf), can lead to contrasting determinations of the dimension of a data set, with the tendency of PCAt to overestimate the number of components. PCAf also provides the possibility of obtaining amplitude and phase-difference spectra for each principal component that are uniquely suitable to reveal control mechanisms of the system. The bias in the PCAt estimate of the number of components can have significant implications for the veracity of the interpretations drawn in regard to the dynamical degrees of freedom of the perceptual-motor system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app