Add like
Add dislike
Add to saved papers

An intelligent scoring system and its application to cardiac arrest prediction.

Traditional risk score prediction is based on vital signs and clinical assessment. In this paper, we present an intelligent scoring system for the prediction of cardiac arrest within 72 h. The patient population is represented by a set of feature vectors, from which risk scores are derived based on geometric distance calculation and support vector machine. Each feature vector is a combination of heart rate variability (HRV) parameters and vital signs. Performance evaluation is conducted on the leave-one-out cross-validation framework, and receiver operating characteristic, sensitivity, specificity, positive predictive value, and negative predictive value are reported. Experimental results reveal that the proposed scoring system not only achieves satisfactory performance on determining the risk of cardiac arrest within 72 h but also has the ability to generate continuous risk scores rather than a simple binary decision by a traditional classifier. Furthermore, the proposed scoring system works well for both balanced and imbalanced datasets, and the combination of HRV parameters and vital signs shows superiority in prediction to using HRV parameters only or vital signs only.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app