COMMENT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1.

Nucleus 2013 November
Considerable attention has been given to the understanding of how nucleosomes are altered or removed from the transcription start site of RNA polymerase II genes to enable transcription to proceed. This has led to the view that for transcriptional activation to occur, the transcription start site (TSS) must become depleted of nucleosomes. However, we have shown that this is not the case with different unstable histone H2A variant-containing nucleosomes occupying the TSS under different physiological settings. For example, during mouse spermatogenesis we found that the mouse homolog of human H2A.Bbd, H2A.Lap1, is targeted to the TSS of active genes expressed during specific stages of spermatogenesis. On the other hand, we observed in trophoblast stem cells, a H2A.Z-containing nucleosome occupying the TSS of genes active in the G 1 phase of the cell cycle. Notably, this H2A.Z-containing nucleosome was different compared with other promoter specific H2A.Z nucleosomes by being heterotypic rather than being homotypic. In other words, it did not contain the expected two copies of H2A.Z per nucleosome but only one (i.e., H2A.Z/H2A rather than H2A.Z/H2A.Z). Given these observations, we wondered whether the histone variant composition of a nucleosome at an active TSS could in fact vary in the same cell type. To investigate this possibility, we performed H2A.Z ChIP-H2A reChIP assays in the mouse testis and compared this data with our testis H2A.Lap1 ChIP-seq data. Indeed, we find that different promoters involved in the expression of genes involved in distinct biological processes can contain either H2A.Z/H2A or H2A.Lap1. This argues that specific mechanisms exist, which can determine whether H2A.Z or H2A.Lap1 is targeted to the TSS of an active gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app