JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Screening and identification of dynamin-1 interacting proteins in rat brain synaptosomes.

Brain Research 2014 January 17
Dynamin-1 is a multi-domain GTPase that is crucial for the fission stage of synaptic vesicle recycling and vesicle trafficking. In this study, we constructed prokaryotic expression plasmids for the four functional domains of dynamin-1, which are pGEX-4T-2-PH, pGEX-4T-2-PRD, pGEX-4T-2-GED and pGEX-4T-2-GTPase. Glutathione S-transferase pull-down, co-immunoprecipitation (co-IP), and liquid chromatography/mass spectrometry were used to screen and identify dynamin-1 interacting proteins in rat brain synaptosomes. We identified a set of 63 candidate protein interactions, including 36 proteins interacting with dynamin-1 C-terminal proline-rich domain (PRD), 14 with pleckstrin-homology domain (PH), 7 with GTPase effector domain (GED) and 6 with GTPase domain, consisting of synaptic vesicle-associated proteins, cytoskeletal proteins, metabolic enzymes and other proteins. We selected three previously unreported dynamin-1 interacting proteins to verify their interaction with dynamin-1 under native conditions. Using co-IP, we found that Rab GDP-dissociation inhibitor (Rab GDI) and chloride channel 3 (ClC-3) do interact with dynamin-1, but not with TUC-4b (the TOAD-64/Ulip/CRMP (TUC) family member). Those novel interactions detected in our study offer valuable insight into the protein-protein interacting network that could enhance our understanding of dynamin-1 mediated synaptic vesicle recycling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app