Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SAHA enhances Proteostasis of epilepsy-associated α1(A322D)β2γ2 GABA(A) receptors.

Chemistry & Biology 2013 December 20
GABA(A) receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit of GABA(A) receptors is known to result in its degradation and reduce its cell surface expression, leading to loss of GABAA receptor function in autosomal dominant juvenile myoclonic epilepsy. Here, we show that SAHA, a FDA-approved drug, increases the transcription of the α1(A322D) subunit, enhances its folding and trafficking posttranslationally, increases its cell surface level, and restores the GABA-induced maximal current in HEK293 cells expressing α1(A322D)β2γ2 receptors to 10% of that for wild-type receptors. To enhance the trafficking efficiency of the α1(A322D) subunit, SAHA increases the BiP protein level and the interaction between the α1(A322D) subunit and calnexin. SAHA is a drug that enhances epilepsy-associated GABAA receptor proteostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app