JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds.

Toward developing a new method for restoring tissue viscoelasticity in scarred vocal folds, we previously proposed a method to localize biomaterials within subepithelial voids ablated using ultrafast laser pulses. The clinical implementation of this method necessitates the quantification of the laser parameters for ablating scarred tissue. Here, we present a comprehensive study of these parameters including ablation threshold and bubble lifetime in healthy and scarred tissues. We also present a new method for extracting tissue-specific ablation threshold and scattering lengths of different tissue layers. This method involves finding the ablation threshold at multiple depths and solving the equations based on Beer's law of light attenuation for each depth to estimate the unknown parameters. Measured threshold fluences were 1.75 J/cm2 for vocal folds and 0.5 J/cm2 for cheek pouches for 3-ps, 776-nm laser pulses. Scarred pouches exhibited 30% lower threshold than healthy pouches, possibly due to the degraded mechanical properties of scarred collagen during wound healing. The analysis of tissue architecture indicated a direct correlation between the ablation threshold and tissue tensile strength and that the bubble lifetime is inversely related to tissue stiffness. Overall, this study sheds light on the required laser parameters for successful implementation of ultrafast laser ablation for phonosurgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app