Add like
Add dislike
Add to saved papers

Plant transformation by particle bombardment of embryogenic pollen.

Plant Cell Reports 1995 Februrary
Direct delivery of DNA into embryogenic pollen was used to produce transgenic plants in tobacco. A plasmid bearing the ß-glucuronidase (GUS) marker gene in fusion with the 35S-promoter was introduced by microprojectile bombardment into mid-binucleate pollen of Nicotiana tabacum that had been induced to form embryos by a starvation treatment. In cytochemical expression assays, 5 out of 10(4) pollen grains were GUS(+). Visual selection by staining with a non-lethal substrate for GUS was used to manually isolate transformed embryos. From the initial population of embryogenic GUS(+) pollen, 1-5% developed into multicellular structures and 0.02% formed regenerable embryos. Two haploid transformants were regenerated. GUS expression was detected in different parts of the plants, and Southern analysis confirmed stable integration of the foreign DNA. Diploidisation was induced by injection of colchicine into the stem near adventitious buds. Offspring from selfings and backcrosses of one transformant were tested for GUS expression and by Southern blots. All F1-plants were transgenic, in accordance with Mendelian inheritance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app