Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inferring therapeutic targets from heterogeneous data: HKDC1 is a novel potential therapeutic target for cancer.

Bioinformatics 2014 March 16
MOTIVATION: The discovery of therapeutic targets is important for cancer treatment. Although dozens of targets have been used in cancer therapies, cancer remains a serious disease with a high mortality rate. Owing to the expansion of cancer-related data, we now have the opportunity to infer therapeutic targets using computational biology methods.

RESULTS: Here, we describe a method, termed anticancer activity enrichment analysis, used to determine genes that could be used as therapeutic targets. The results show that these genes have high likelihoods of being developed into clinical targets (>60%). Combined with gene expression data, we predicted 50 candidate targets for lung cancer, of which 19 of the top 20 genes are targeted by approved drugs or drugs used in clinical trials. A hexokinase family member, hexokinase domain-containing protein 1 (HKDC1), is the only one of the top 20 genes that has not been targeted by either an approved drug or one being used in clinical trials. Further investigations indicate that HKDC1 is a novel potential therapeutic target for lung cancer.

CONCLUSION: We developed a protocol to identify potential therapeutic targets from heterogeneous data. We suggest that HKDC1 is a novel potential therapeutic target for lung cancer.

CONTACT: [email protected]

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app