JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of ectonucleotide pyrophosphatase-1 in end-plate chondrocytes with transforming growth factor beta 1 siRNA interference by cyclic mechanical tension.

BACKGROUND: Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-1 is a membrane-bound protein that catalyzes the hydrolysis of extracellular nucleoside triphosphates to monophosphate and extracellular inorganic pyrophosphate (ePPi). Mechanical stimulation regulates ENPP-1 expression. This study sought to investigate the changes in ENPP-1 expression after stimulation using cyclic mechanical tension (CMT).

METHODS: Rat end-plate chondrocytes were cultured and subjected to CMT (at 3%, 6%, and 9% elongation) for 20, 40, and 60 minutes to observe changes in the expression of ENPP-1. To investigate the pathway, end-plate chondrocytes were exposed to 10 ng/ml of transforming growth factor beta 1 (TGF-β1), TGF-β1 siRNA, or a specific extracellular signalregulated kinase (ERK)1/2 inhibitor, U0126, in addition to CMT. Changes in ENPP-1 expression were measured by reverse transcription PCR (RT-PCR) and Western blotting.

RESULTS: We observed the largest increase in ENPP-1 expression following 3% elongation CMT stimulation. ENPP-1 expression was also increased when end-plate chondrocytes were exposed to 10 ng/ml of TGF-β1, but decreased after TGF-β knockdown with siRNA. ERK1/2 phosphorylation was activated after 3% elongation for 40 minutes, and the stimulatory effect of TGF-β1 on ENPP-1 mRNA and protein expression was inhibited by the suppression of the ERK1/2 pathway using U0126.

CONCLUSION: CMT increases the expression of ENPP-1 in end-plate chondrocytes in a manner likely dependent on TGF-β induction by the ERK1/2 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app