JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel.

Clinical topoisomerase I (Top1) and II (Top2) inhibitors trap topoisomerases on DNA, thereby inducing protein-linked DNA breaks. Cancer cells resist the drugs by removing topoisomerase-DNA complexes, and repairing the drug-induced DNA double-strand breaks (DSB) by homologous recombination and nonhomologous end joining (NHEJ). Because numerous enzymes and cofactors are involved in the removal of the topoisomerase-DNA complexes and DSB repair, it has been challenging to comprehensively analyze the relative contribution of multiple genetic pathways in vertebrate cells. Comprehending the relative contribution of individual repair factors would give insights into the lesions induced by the inhibitors and genetic determinants of response. Ultimately, this information would be useful to target specific pathways to augment the therapeutic activity of topoisomerase inhibitors. To this end, we put together 48 isogenic DT40 mutant cells deficient in DNA repair and generated one cell line deficient in autophagy (ATG5). Sensitivity profiles were established for three clinically relevant Top1 inhibitors (camptothecin and the indenoisoquinolines LMP400 and LMP776) and three Top2 inhibitors (etoposide, doxorubicin, and ICRF-193). Highly significant correlations were found among Top1 inhibitors as well as Top2 inhibitors, whereas the profiles of Top1 inhibitors were different from those of Top2 inhibitors. Most distinct repair pathways between Top1 and Top2 inhibitors include NHEJ, TDP1, TDP2, PARP1, and Fanconi Anemia genes, whereas homologous recombination seems relevant especially for Top1 and, to a lesser extent, for Top2 inhibitors. We also found and discuss differential pathways among Top1 inhibitors and Top2 inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app