Add like
Add dislike
Add to saved papers

Temperature-dependent, nitrogen-perturbed line shape measurements in the ν1 + ν3 band of acetylene using a diode laser referenced to a frequency comb.

The P(11) line of the ν1 + ν3 combination band of C2H2 was studied using an extended cavity diode laser locked to a frequency comb. Line shapes were measured for acetylene and nitrogen gas mixtures at a series of temperatures between 125 and 296 K and total pressures up to 1 atm. The data were fit to two speed-dependent line shape models and the results were compared. Line shape parameters were determined by simultaneously fitting data for all temperatures and pressures in a single multispectrum analysis. Earlier pure acetylene measurements [Cich et al. Appl. Phys. B 2012, 109, 373-38] were incorporated to account for self-perturbation. The resulting parameters reproduce the observed line shapes for the acetylene-nitrogen system over the range of temperatures and pressures studied with average root-mean-square observed-calculated errors of individual line measurement fits of approximately 0.01% of maximum transmission, close to the experimental signal-to-noise ratios. Errors in the pressure measurements constitute the major systematic errors in these measurements, and a statistical method is developed to quantify their effects on the line shape parameters for the present system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app