Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis.

Plant Journal 2013 December
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1-1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1-1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo ¹⁴C-acetate labeling experiments showed that, compared with wild-type, tgd1-1 exhibits a 3.8-fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over-expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1-1. We also show that detached leaves of both pdat1-2 and tgd1-1 pdat1-2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA-induced cell death in fast-growing tissues of plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app