Journal Article
Review
Add like
Add dislike
Add to saved papers

Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na(+)-HCO3 (-) cotransporter NBCe1.

The electrogenic Na(+)-HCO3 (-) cotransporter NBCe1 plays an essential role in bicarbonate absorption from renal proximal tubules, but also mediates the other biological processes in extrarenal tissues such as bicarbonate secretion from pancreatic ducts, maintenance of tissue homeostasis in eye, enamel maturation in teeth, or local pH regulation in synapses. Homozygous mutation in NBCe1 cause proximal renal tubular acidosis (pRTA) associated with extrarenal manifestations such as short stature, ocular abnormalities, enamel abnormalities, and migraine. Functional analyses of NBCe1 mutants using different expression systems suggest that at least a 50% reduction of the transport activity may be required to induce severe pRTA. In addition to functional impairments, some NBCe1 mutants show trafficking defects. Some of the pRTA-related NBCe1 mutants showing the cytoplasmic retention have been shown to exert a dominant negative effect through hetero-oligomer complexes with wild-type NBCe1 that may explain the occurrence of extrarenal manifestations in the heterozygous carries of NBCe1 mutations. Both NBCe1 knockout (KO) and W516X knockin (KI) mice showed very severe pRTA and reproduced most of the clinical manifestations observed in human pRTA patients. Functional analysis on isolated renal proximal tubules from W516X KI mice directly confirmed the indispensable role of NBCe1 in bicarbonate absorption from this nephron segment. In this review, we will focus on the molecular mechanisms underling the renal and extrarenal manifestations caused by NBCe1 inactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app