JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management.

PURPOSE OF REVIEW: Cold exposure activates brown adipose tissue (BAT), the major site of sympathetically activated nonshivering thermognenesis, via transient receptor potential (TRP) channels. Capsaicin and its nonpungent analogue (capsinoids) are agonists for a vanilloid subtype one of TRP, and have the potential to increase whole-body energy expenditure and reduce body fat. This article reviews the regulatory roles of BAT for energy expenditure and body fat in humans, particularly focusing on food ingredients activating the TRP-BAT axis.

RECENT FINDINGS: Acute cold exposure increased energy expenditure in humans with metabolically active BAT, but not those without it. Quite similar responses were found after a single oral ingestion of either capsinoids or an alcohol extract of Guinea pepper seeds, indicating that these food ingredients activate BAT and thereby increase energy expenditure. When individuals without active BAT were exposed to cold every day for 6 weeks, BAT was recruited in association with increased energy expenditure and decreased body fat. A 6-week daily ingestion of capsinoids mimicked the effects of repeated cold exposure. These findings indicate that human BAT can be reactivated/recruited, thereby increasing energy expenditure and decreasing body fat.

SUMMARY: Human BAT recruited by prolonged ingestion of a vanilloid subtype one of TRP agonists increases energy expenditure and decreases body fat. In addition to capsinoids, there are numerous food ingredients acting as TRP agonists, which are expected to activate BAT and so be useful for the prevention of obesity in daily life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app