JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure.

Aquatic organisms possess cellular detoxification systems to deal with pollutants. To explore the influence of reactive oxygen species (ROS) generated in response to nitrite on oxidative stress defenses and the antioxidant system in Megalobrama amblycephala, the full length cDNA sequences were determined for three antioxidant-related genes, namely catalase (MaCAT), selenium-dependent glutathione peroxidase (MaGPx1) and Cu/Zn superoxide dismutase (MaCu/Zn-SOD). Encoded polypeptides that exhibited high identity and similarity with corresponding proteins in other fish species. Expression levels of these antioxidant genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) technique. MaCAT, MaGPx1 and MaCu/Zn-SOD expression was greatest in the liver and qRT-PCR was used to assess expression of these genes in juvenile fish during 72 h of exposure to 15 mg/L nitrite. Prolonged nitrite exposure resulted in the formation of excess ROS that caused oxidative damage to lipids and proteins and reduced the activities of antioxidant enzymes. Fish exposed to nitrite also showed liver damage. This study provides transcriptional data for MaCAT, MaGPx1 and MaCu/Zn-SOD that suggest expression is related positively with oxidative stress induced by nitrite exposure, indicating that imbalance between ROS and antioxidant defenses is one mechanism underlying nitrite toxicity in M. amblycephala.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app