Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Rheological investigation of the shear strength, durability, and recovery of alginate rafts formed by antacid medication in varying pH environments.

The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (Gaviscon Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1-1.7) and aging conditions (0.5-4 h). Rafts formed in the lowest acidity solutions (pH 1.4, 1.7) were elastically weak ( G'₀ = 60 , 42 Pa for un-aged raft) yet maintained their elasticity during applied shear deformation to large values of strain (γc∼90%, 50%, where G'≈G″), and displayed a low-to-moderate level of elastic recovery following large-strain deformation. Rafts formed in the highest acidity solution had the greatest strength ( G'₀ = 500 Pa for un-aged raft and 21.5 kPa for rafts after 0.5 h of aging), reduced durability (γc∼2.5%, independent of aging), and displayed the greatest recoverability. A trade-off existed between un-aged raft strength and durability while recovery was dependent on durability, solution pH, and age. Rheometry-based evaluations of alginate rafts could be used for the informed design of future gastric retention and antacid products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app