Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Differential effects of ovarian steroids and triphenylethylene compounds on macromolecular uptake and thymidine incorporation in the mouse uterus.

In the rodent uterus, estrogen elicits a biphasic response i.e. an early phase (Phase I) and a late phase (Phase II). Estradiol-17 beta (E2) and estriol (E3), as well as triphenylethylene (TPE) compounds, CI-628 and clomiphene citrate (CC), were used to characterize Phase I and Phase II responses in uterine preparation for implantation in the mouse. While uterine macromolecular uptake (vascular permeability), a Phase I response, was studied in progesterone (P4)-primed animals, uterine [3H]thymidine incorporation (DNA synthesis), a Phase II response, was investigated with and without P4-priming. In the P4-primed uterus, all compounds, except CC, significantly increased uterine macromolecular uptake as determined by interstitial tissue accumulation of [125I]bovine serum albumin [( 125I]BSA). DNA synthesis as determined by cellular incorporation of [3H]thymidine was modulated by P4, estrogens and TPE compounds in a cell-type specific and temporal manner. As a single injection and in the absence of P4, E2 induced [3H]thymidine incorporation in the luminal and glandular epithelium at 18 and 24 h. E3 was inferior to E2 in this response. On the other hand, treatment with P4 for 1 day or 4 days induced [3H]thymidine incorporation primarily in stromal cells. However, stromal cell incorporation was potentiated when P4 treatment was combined with estrogens or TPE compounds. These results reveal the relative importance of Phase I and cell-type specific Phase II responses in uterine preparation for implantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app