Add like
Add dislike
Add to saved papers

A tree-like model for brain growth and structure.

The Flory-Stockmayer theory for the polycondensation of branched polymers, modified for finite systems beyond the gel point, is applied to the connection (synapses) of neurons, which can be considered highly branched "monomeric" units. Initially, the process is a linear growth and tree-like branching between dendrites and axons of nonself-neurons. After the gel point and at the maximum "tree" size, the tree-like model prescribes, on average, one pair of twin synapses per neuron. About 13% of neurons, "unconnected" to the maximum tree, migrate to the surface to form cortical layers. The number of synapses in each neuron may reach 10000, indicating a tremendous amount of flexible, redundant, and neuroplastic loop-forming linkages which can be preserved or pruned by experience and learning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app