Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of miR200 by c-Myb depends on ZEB1 expression and miR200 promoter methylation.

Cell Cycle 2013 July 16
Tumor progression to metastasis is a complex, sequential process that requires proliferation, resistance to apoptosis, motility and invasion to colonize at distant sites. The acquisition of these features implies a phenotypic plasticity by tumor cells that must adapt to different conditions by modulating several signaling pathways (1) during the journey to the final site of metastasis. Several transcription factors and microRNA play a role in tumor progression, but less is known about the control of their expression during this process. Here, we demonstrate by ectopic expression and gene silencing that the proto-oncogene c-Myb activates the expression of the 5 members of miR200 family (miR200b, miR200a, miR429, miR200c and miR141) that are involved in the control of epithelial-mesenchymal transition (EMT) and metastasis in many types of cancers. Transcriptional activation of miR200 by c-Myb occurs through binding to myb binding sites located in the promoter regions of miR200 genes on human chromosomes 1 and 12. Furthermore, when c-Myb and the transcriptional repressor ZEB1 are co-expressed, as at the onset EMT, the repression by ZEB1 prevails over the activation by c-Myb, and the expression of miR200 is inhibited. We also demonstrate that during EMT induced by TGF-β, the promoters of miR200 genes are methylated, and their transcription is repressed regardless of the presence of repressors such as ZEB1 and activators such as c-Myb. Finally, we find a correlation between the expression of c-Myb and that of four out of 5 miR200 in a data set of 207 breast cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app