JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of DNA polymerase-associated acyclovir-resistant herpes simplex virus type 1: mutations, sensitivity to antiviral compounds, neurovirulence, and in-vivo sensitivity to treatment.

Acyclovir (ACV)-resistant (ACV(r)) mutants were generated from plaque-purified ACV-sensitive herpes simplex virus type 1 (HSV-1) by culturing the virus in Vero cells in the presence of 2-amino-7-(1,3-dihydroxy-2-propoxymethyl) purine (S2242). Three DNA polymerase (DNApol)-associated ACV(r) HSV-1 generated under ACV selection in a previous study (Suzutani, T., Ishioka, K., De Clercq, E., et al., Antimicrob. Agents Chemother., 47, 1707-1713, 2003) were also included. The sensitivity of the mutants to other antivirals and their neurovirulence were determined. The treatment efficacy of ACV and ganciclovir (GCV) against ACV(r) HSV-1 infections was evaluated in mice. Amino acid substitutions were demonstrated in conserved regions II and III in DNApol in 5 of the 6 mutants, while the other substitution was located in non-conserved regions. DNApol-associated ACV(r) clones showed cross-resistance to foscarnet, penciclovir, and vidarabine but were sensitive or hypersensitive to GCV, brivudin, sorivudine, and spongothymidine. The ACV(r) clone with an N815S mutation in DNApol showed similar neurovirulence to that of the parent virus; however, those with other mutations showed attenuation. GCV was effective in the treatment of the ACV(r) clone with similar virulence to that of parent HSV-1, while ACV was less effective in mice. These results indicate the importance of the characterization of HSV-1 isolates for the proper treatment of HSV-1 infections exhibiting ACV-resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app