Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ.

OBJECTIVE: Since dermatomyositis (DM) is associated with an increased risk of malignancy, accurate identification of patients likely to harbor cancers is important. Using immunoprecipitations from radiolabeled cell lysates, several groups recently showed that anti-transcription intermediary factor 1γ (anti-TIF-1γ) antibodies are associated with malignancy in DM. We undertook this study to develop sensitive, specific assays to detect antibodies against TIF-1γ and nuclear matrix protein NXP-2 and to evaluate their association with malignancy in DM.

METHODS: To detect anti-TIF-1γ antibodies, immunoprecipitations were performed using lysates made from HeLa cells overexpressing TIF-1γ, with detection by immunoblotting. Anti-NXP-2 antibodies were assayed by immunoprecipitation using (35) S-methionine-labeled NXP-2 generated by in vitro transcription/translation. We analyzed patient sera from DM cohorts seen at the Stanford University Dermatology Clinic (n = 111) and the Johns Hopkins Myositis Center (n = 102).

RESULTS: A total of 17% and 38% of patients had antibodies against NXP-2 and TIF-1γ, respectively. Reactivity against either NXP-2 or TIF-1γ identified 83% of patients with cancer-associated DM. In addition to older age and male sex, cancer was associated with antibodies to NXP-2 or TIF-1γ on multivariate analysis (odds ratio 3.78 [95% confidence interval 1.33-10.8]). Stratification by sex revealed that anti-NXP-2 was specifically associated with cancer in males (odds ratio 5.78 [95% confidence interval 1.35-24.7]).

CONCLUSION: These studies demonstrate that anti-NXP-2 and anti-TIF-1γ antibodies are frequent DM specificities (found in 55% of patients) and are present in most patients with cancer-associated DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app