Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structures of a(n)* ions derived from protonated pentaglycine and pentaalanine: results from IRMPD spectroscopy and DFT calculations.

Infrared multiple-photon dissociation (IRMPD) spectroscopy and DFT calculations have been used to probe the most stable structures of a3(*) and a4(*) ions derived from both protonated pentaglycine (denoted G5) and pentaalanine (A5). The a3(*) and a4(*) ions derived from protonated A5 feature a CHR=N-CHR'- group at the N-terminus and an oxazolone ring at the C-terminus, as proposed previously [J. Am. Soc. Mass Spectrom. 19, 1788-1798 (2008)]. The isomeric a4(*) ion derived from A5 with a 3,5-dihydro-4H-imidazol-4-one ring structure was calculated to have a slightly better energy than the oxazolone, but the barrier to its formation is higher and there was no evidence of this ion in the IRMPD spectrum. By contrast, the a4(*) and [a4 - H2O](+) (denoted a4(0)) ions from G5 gave strikingly similar IRMPD spectra and both have the 3,5-dihydro-4H-imidazol-4-one ring structure similar to that recently reported for the [GGGG + H - H2O](+) ion [Int. J. Mass Spectrom. 316-318, 268-272 (2012)]. In the absence of a solvent molecule, the pathway to the oxazolone is calculated to be lower than those to thermodynamically more stable products, the a4(0) and the a4(*) with the 3,5-dihydro-4H-imidazol-4-one ring structure. Incorporation of one water molecule is sufficient to reduce the barrier to formation of the a4(0) of G5 to below that for formation of the oxazolone. On the equivalent potential energy surface for protonated A5 the barrier to formation of the a4(0) ion is 12.3 kcal mol(-1) higher than that for oxazolone formation and the a4(0) ion is not observed experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app