JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dihydropyrimidinase-like protein 3 expression is negatively regulated by MYCN and associated with clinical outcome in neuroblastoma.

Cancer Science 2013 December
Dihydropyrimidinase-like proteins (DPYSLs) are a family of proteins developmentally regulated during maturation of the nervous system. Recently, members of the DPYSL family have been reported to be involved in cancer with low expression of DPYSL1 correlating with poor clinical outcomes in non-small cell lung cancer and functioning as a metastasis suppressor. Neuroblastoma (NB) is a tumor derived from precursor cells of the sympathetic nervous system and is the most common solid tumor in childhood. So far the biological functions of DPYSLs in NB remain elusive. Studying the potential roles of DPYSLs in NB may give us new insights into NB tumorigenesis. In the present study, using antibodies specific to different members of the DPYSL family, DPYSL1, DPYSL2 and DPYSL3, we investigated regulation of their expression and their subcellular distribution during retinoic acid (RA)-induced differentiation in NB cells. The correlation between DPYSLs and MYCN, a biomarker for poor prognosis of NB, was evaluated. We found that DPYSL3 levels increased during RA-induced cell differentiation. Downregulation of MYCN by small interfering RNA (siRNA) increased DPYSL3 levels, while upregulation of MYCN in non-MYCN NB cells decreased DPYSL3 levels. DPYSL1 and DPYSL2 expression didn't change during RA treatment or under different expression levels of MYCN. Moreover, a high level of DPYSL3 mRNA, but not that of DPYSL1 or DPYSL2 mRNA, was detected in tumors from advanced-stage NB that have a better survival. These data indicated that DPYSL3, not DPYSL1 or DPYSL2, is negatively regulated by MYCN and may be used as a potential biomarker for NB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app