Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased hydroxymethylglutaryl coenzyme A reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission.

Antiviral Research 2013 October
We have examined the role that hydroxymethylglutaryl coenzyme A reductase (HMGCR) plays during respiratory syncytial virus (RSV) maturation. Imaging analysis indicated that virus-induced changes in F-actin structure correlated with the formation of virus filaments, and that these virus filaments played a direct role in virus cell-to-cell transmission. Treatment with cytochalasin D (CYD) prevented virus filament formation and virus transmission, but this could be reversed by removal of CYD. This observation, together with the presence of F-actin within the virus filaments suggested that newly polymerised F-actin was required for virus transmission. The virus-induced change in F-actin was inhibited by the HMGCR inhibitor lovastatin, and this correlated with the inhibition of both virus filament formation and the incorporation of F-actin in these virus structures. Furthermore, this inhibitory effect on virus filament formation correlated with a significant reduction in RSV transmission. Collectively these data suggested that HMGCR-mediated changes in F-actin structure play an important role in the inter-cellular transmission of mature RSV particles. These data also highlighted the interplay between cellular metabolism and RSV transmission, and demonstrate that this interaction can be targeted using anti-virus strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app