Add like
Add dislike
Add to saved papers

Prolonged mechanical ventilation alters the expression pattern of angio-neogenetic factors in a pre-clinical rat model.

OBJECTIVE: Mechanical ventilation (MV) is a life saving intervention for patients with respiratory failure. Even after 6 hours of MV, diaphragm atrophy and dysfunction (collectively referred to as ventilator-induced diaphragmatic dysfunction, VIDD) occurs in concert with a blunted blood flow and oxygen delivery. The regulation of hypoxia sensitive factors (i.e. hypoxia inducible factor 1α, 2α (HIF-1α,-2α), vascular endothelial growth factor (VEGF)) and angio-neogenetic factors (angiopoietin 1-3, Ang) might contribute to reactive and compensatory alterations in diaphragm muscle.

METHODS: Male Wistar rats (n = 8) were ventilated for 24 hours or directly sacrificed (n = 8), diaphragm and mixed gastrocnemius muscle tissue was removed. Quantitative real time PCR and western blot analyses were performed to detect changes in angio-neogenetic factors and inflammatory markers. Tissues were stained using Isolectin (IB 4) to determine capillarity and calculate the capillary/fiber ratio.

RESULTS: MV resulted in up-regulation of Ang 2 and HIF-1α mRNA in both diaphragm and gastrocnemius, while VEGF mRNA was down-regulated in both tissues. HIF-2α mRNA was reduced in both tissues, while GLUT 4 mRNA was increased in gastrocnemius and reduced in diaphragm samples. Protein levels of VEGF, HIF-1α, -2α and 4 did not change significantly. Additionally, inflammatory cytokine mRNA (Interleukin (IL)-6, IL-1β and TNF α) were elevated in diaphragm tissue.

CONCLUSION: The results demonstrate that 24 hrs of MV and the associated limb disuse induce an up-regulation of angio-neogenetic factors that are connected to HIF-1α. Changes in HIF-1α expression may be due to several interactions occurring during MV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app