Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Establishment of a rabbit model of obstructive sleep apnea by paralyzing the genioglossus.

IMPORTANCE: This study presents an innovative method for developing a neuromuscular model of obstructive sleep apnea (OSA).

OBJECTIVE: To establish a new OSA animal model simulating real upper airway conditions during sleep.

DESIGN AND SETTING: In vivo animal study at an academic tertiary referral center.

SUBJECTS: A total of 27 New Zealand white male rabbits were used.

INTERVENTION: Sleep was induced by intramuscular injection of 0.3 mL/kg of tiletamine hydrochloride plus zolazepam hydrochloride and 0.2 mL/kg of xylazine. Upper airway obstruction was induced by injecting botulinum toxin type A (2.5 U in 8 rabbits, 5.0 U in 10 rabbits, and 7.5 U in 1 rabbit) into the genioglossus. Eight rabbits were injected with normal saline as a control.

MAIN OUTCOMES AND MEASURES: Drug-induced sleep was evaluated using a portable polysomnography device for electroencephalography, electrooculography, chin electromyography, nasal airflow, breathing efforts, and pulse oxymetry. Respiratory events (apneas or hypopneas) during sleep were evaluated using a sleep-screening tool.

RESULTS: All the rabbits showed no apneas or hypopneas before injection of botulinum toxin type A. In the control rabbits injected with normal saline, apneas or hypopneas were not found. The respiratory events were observed in 5 of 8 rabbits injected with 2.5 U of botulinum toxin type A, whereas they were observed in 7 of 10 rabbits injected with 5.0 U of botulinum toxin type A. The median (interquartile range) apnea hypopnea index was 9.6 (5.3-14.8) per hour and 45.6 (21.5-70.5) per hour in the rabbits injected with 2.5 U and 5.0 U of botulinum toxin type A, respectively (P = .03).

CONCLUSIONS AND RELEVANCE: An animal model of OSA could be developed by paralyzing the genioglossus in rabbits. This model may contribute to identifying the pathogenesis of upper airway obstruction in OSA and to developing new diagnostic or treatment devices targeting specific obstruction sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app