JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness.

Spine 2013 October 16
STUDY DESIGN: An in vitro biomechanical study.

OBJECTIVE: To perform in vitro biomechanical testing on a lumbar spine using a 6-degree-of-freedom machine. To compare the range of motion (ROM), intradiscal pressure, and facet force of different 3-level dynamic stabilization constructs with traditional rigid constructs. To determine the effect of decreasing the stiffness of the dynamic construct on the various parameters.

SUMMARY OF BACKGROUND DATA: Dynamic stabilization systems are a surgical option that may minimize the development of adjacent segment disease.

METHODS: Seven T12-S1 specimens were tested at ± 7.5 Nm in flexion-extension, lateral bending, and axial rotation. The testing sequence was (1) intact, (2) intact with facet sensors, (3) L3-S1 rigid (3R), (4) L3-L4 dynamic and L4-S1 rigid (1D-2R A), (5) L3-L5 dynamic and L5-S1 rigid (2D-1R A), and (6) L3-S1 dynamic (3D A). Constructs 1D-2R A, 2D-1R A, and 3D A were tested again with the specialized designs of B and C of decreased stiffness. ROM, intradiscal pressure, and facet force were measured.

RESULTS: In all loading modes there was a trend of increasing motion with decreased stiffness. Significant differences were seen with more dynamic stabilization levels but no significance was seen with only decreasing the stiffness. 3R facet force at the caudal instrumented level significantly decreased compared with intact and dynamic stabilization constructs during axial rotation.

CONCLUSION: Biomechanical testing resulted in a trend of increased ROM across instrumented levels as the stiffness was decreased. Dynamic stabilization increased the ROM across instrumented levels compared with rigid rods. These results suggest that decreasing the stiffness of the construct may lessen the probability of adjacent-level disease. Although the specialized devices are not commercially available, clinical data would be necessary for a clearer understanding of adjacent level effects and to confirm the in vitro biomechanical findings.

LEVEL OF EVIDENCE: N/A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app