Add like
Add dislike
Add to saved papers

Quantitative analysis of piroxicam using temperature-controlled ionic liquid dispersive liquid phase microextraction followed by stopped-flow injection spectrofluorimetry.

BACKGROUND: Piroxicam (PXM) belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs). PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) was followed with stopped-flow injection spectrofluorimetry (SFIS) for quantitation of PXM in pharmaceutical formulations and biological samples.

METHODS: Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6]) ionic liquid (IL) through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS).

RESULTS AND MAJOR CONCLUSION: Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD) of 0.046 μg l-1 and a relative standard deviation (RSD) of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app