JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy.

BACKGROUND: Diabetic retinopathy (DR) is a preventable cause of visual disability. The aims of the present study were to investigate levels and behavior oxidative stress markers and mitochondrial function in non-proliferative DR (NPDR) and to establish the correlation between the severity of NPDR and markers of oxidative stress and mitochondrial function.

METHODS: In a transverse analysis, type 2 diabetes mellitus (T2DM) patients with mild, moderate and severe non-proliferative DR (NPDR) were evaluated for markers of oxidative stress (i.e. products of lipid peroxidation (LPO) and nitric oxide (NO) catabolites) and antioxidant activity (i.e. total antioxidant capacity (TAC), catalase, and glutathione peroxidase (GPx) activity of erythrocytes). Mitochondrial function was also determined as the fluidity of the submitochondrial particles of platelets and the hydrolytic activity of F0 /F1 -ATPase.

RESULTS: Levels of LPO and NO were significantly increased in T2DM patients with severe NPDR (3.19 ± 0.05 μmol/mL and 45.62 ± 1.27 pmol/mL, respectively; P < 0.007 and P < 0.0001 vs levels in health volunteers, respectively), suggesting the presence of oxidative stress. TAC had significant decrease levels with minimum peak in severe retinopathy with 7.98 ± 0.48 mEq/mL (P < 0.0001). In contrast with TAC, erythrocyte catalase and GPx activity was increased in patients with severe NPDR (139.4 ± 4.4 and 117.13 ± 14.84 U/mg, respectively; P < 0.0001 vs healthy volunteers for both), suggesting an imbalance between oxidants and antioxidants. The fluidity of membrane submitochondrial particles decreased significantly in T2DM patients with mild, moderate, or severe NPDR compared with that in healthy volunteers (P < 0.0001 for all). Furthermore, there was a significant increase in the hydrolytic activity of the F0 /F1 -ATPase in T2DM patients with mild NPDR (265.07 ± 29.55 nmol/PO4 ; P < 0.0001 vs healthy volunteers), suggesting increased catabolism.

CONCLUSIONS: Patients with NPDR exhibit oxidative deregulation with decreased membrane fluidity of submitochondrial particles and increased systemic catabolism (mitochondrial dysfunction) with the potential for generalized systemic damage in T2DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app