JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Surfactant-free, lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery.

Gene therapy holds promise to suppress carcinomas but still remains far removed from clinic because of the lack of a safe and effective delivery system. Besides enhancing transfection efficiency, the difficulty in gene therapy is how to deliver sufficient gene molecules to the site of interest. Herein, the rational design of surfactant-free lipo-polymersomes (LPPs) to overcome these problems is reported, simultaneously using a lipid-stabilized double emulsion approach. The LPPs are designed to conceal the cationic lipids and plasmid DNA inside the core along with iron oxide nanoparticles/polymer interlayer and a relatively neutral lipid shell to avoid the undesired interaction during circulation, leading to high accumulation in the tumors of mice. Furthermore, guided by an external magnetic field and the folic acid (FA) that target tumors via folate receptor-mediated endocytosis on the cell surface, the vectors demonstrate a 30-40-fold increase in cell uptake. Moreover, this synergistic tumor-targeted approach can enhance a 10-fold increase in in vivo transfection efficacy by promoting the delivery of LPPs to cancer cells and facilitating the endosomal escape of gene molecules. The new insights and capabilities represent a major step in nanovector engineering for safe and efficient gene delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app