JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Alterations to landing technique and patellar tendon loading in response to fatigue.

PURPOSE: Fatigue may contribute to knee joint injuries, such as patellar tendinopathy, by increasing joint loading and altering lower limb landing technique, which in turn may increase tissue loading. This study aimed to investigate the effect of lower limb muscle fatigue on the landing technique and patellar tendon loads generated during the horizontal and vertical landing phases of a stop-jump task. It was hypothesized that muscle fatigue would increase patellar tendon loading and alter the landing technique displayed during the horizontal, but not the vertical, landing phase of the stop-jump task.

METHODS: Sixteen men, recruited from team sports involving repetitive landing, performed repeated trials of a stop-jump task. During each trial, the participants' ground reaction forces and electromyographic activity of seven lower limb muscles were recorded, three-dimensional kinematics measured, and peak patellar tendon force (FPT) calculated.

RESULTS: When fatigued, participants generated a significantly lower FPT and FPT loading rate, despite a higher vertical ground reaction force (FV) and FV loading rate, during the horizontal landing phase of the stop-jump task. During the vertical landing phase, participants displayed only minor changes to the kinetics and kinematics of their landing in response to fatigue, although fatigue caused substantial alterations to their lower limb muscle activation patterns during landing.

CONCLUSIONS: During the horizontal landing phase of the stop-jump task, participants decreased their patellar tendon load when they were fatigued by altering their lower limb landing technique, including a reduced net knee joint extension moment associated with less knee and hip flexion. This decrease in patellar tendon loading when fatigued may be an inherent protective strategy to potentially decrease loading of the tendon during repetitive landing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app