Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes.

BACKGROUND: Reduction in foot mobility has been identified as a key factor of altered foot biomechanics in individuals with diabetes mellitus. This study aimed at comparing in vivo segmental foot kinematics and coupling in patients with diabetes with and without neuropathy to control adults.

METHODS: Foot mobility of 13 diabetic patients with neuropathy, 13 diabetic patients without neuropathy and 13 non-diabetic persons was measured using an integrated measurement set-up including a plantar pressure platform and 3D motion analysis system. In this age-, sex- and walking speed matched comparative study; differences in range of motion quantified with the Rizzoli multisegment foot model throughout different phases of the gait cycle were analysed using one-way repeated measures analysis of variance (ANOVA). Coupling was assessed with cross-correlation techniques.

FINDINGS: Both cohorts with diabetes showed significantly lower motion values as compared to the control group. Transverse and sagittal plane motion was predominantly affected with often lower range of motion values found in the group with neuropathy compared to the diabetes group without neuropathy. Most significant changes were observed during propulsion (both diabetic groups) and swing phase (predominantly diabetic neuropathic group). A trend of lower cross-correlations between segments was observed in the cohorts with diabetes.

INTERPRETATION: Our findings suggest an alteration in segmental kinematics and coupling during walking in diabetic patients with and without neuropathy. Future studies should integrate other biomechanical measurements as it is believed to provide additional insight into neural and mechanical deficits associated to the foot in diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app