Add like
Add dislike
Add to saved papers

Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI.

AIM: To correlate dual-energy computed tomography (DECT) pulmonary angiography derived iodine maps with parameter maps of quantitative pulmonary perfusion magnetic resonance imaging (MRI).

METHODS: Eighteen patients with pulmonary perfusion defects detected on DECT derived iodine maps were included in this prospective study and additionally underwent time-resolved contrast-enhanced pulmonary MRI [dynamic contrast enhanced (DCE)-MRI]. DCE-MRI data were quantitatively analyzed using a pixel-by-pixel deconvolution analysis calculating regional pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) in visually normal lung parenchyma and perfusion defects. Perfusion parameters were correlated to mean attenuation values of normal lung and perfusion defects on DECT iodine maps. Two readers rated the concordance of perfusion defects in a visual analysis using a 5-point Likert-scale (1 = no correlation, 5 = excellent correlation).

RESULTS: In visually normal pulmonary tissue mean DECT and MRI values were: 22.6 ± 8.3 Hounsfield units (HU); PBF: 58.8 ± 36.0 mL/100 mL per minute; PBV: 16.6 ± 8.5 mL; MTT: 17.1 ± 10.3 s. In areas with restricted perfusion mean DECT and MRI values were: 4.0 ± 3.9 HU; PBF: 10.3 ± 5.5 mL/100 mL per minute, PBV: 5 ± 4 mL, MTT: 21.6 ± 14.0 s. The differences between visually normal parenchyma and areas of restricted perfusion were statistically significant for PBF, PBV and DECT (P < 0.0001). No linear correlation was found between MRI perfusion parameters and attenuation values of DECT iodine maps (PBF: r = 0.35, P = 0.15; PBV: r = 0.34, P = 0.16; MTT: r = 0.41, P = 0.08). Visual analysis revealed a moderate correlation between perfusion defects on DECT iodine maps and the parameter maps of DCE-MRI (mean score 3.6, κ 0.45).

CONCLUSION: There is a moderate visual but not statistically significant correlation between DECT iodine maps and perfusion parameter maps of DCE-MRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app