Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing.

Development of bioinert membranes to prevent blood clotting, tissue adhesion, and bacterial attachment is important for the wound healing process. In this work, two wound-contacting membranes of expanded poly(tetrafluoroethylene) (ePTFE) grafted with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and hydrophilic poly(ethylene glycol) methacrylate (PEGMA) via atmospheric plasma-induced surface copolymerization were studied. The surface grafting chemical structure, hydrophilicity, and hydration capability of the membranes were determined to illustrate the correlations between bioadhesive properties and wound recovery of PEGylated and zwitterionic ePTFE membranes. Bioadhesive properties of the membranes were evaluated by the plasma protein adsorption, platelet activation, blood cell hemolysis, tissue cell adhesion, and bacterial attachment. It was found that the zwitterionic PSBMA-grafted ePTFE membrane presented high hydration capability and exhibited the best nonbioadhesive character in contact with protein solution, human blood, tissue cells, and bacterial medium. This work shows that zwitterionic membrane dressing provides a moist environment, essential for "deep" skin wound healing observed from the animal rat model in vivo and permits a complete recovery after 14 days, with histology of repaired skin similar to that of normal skin tissue. This work suggests that the bioinert nature of grafted PSBMA polymers obtained by controlling grafting structures gives them great potential in the molecular design of antibioadhesive membranes for use in skin tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app