JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pancreatic α-cell specific deletion of mouse Arx leads to α-cell identity loss.

The specification and differentiation of pancreatic endocrine cell populations (α-, β-, δ, PP- and ε-cells) is orchestrated by a combination of transcriptional regulators. In the pancreas, Aristaless-related homeobox gene (Arx) is expressed first in the endocrine progenitors and then restricted to glucagon-producing α-cells. While the functional requirement of Arx in early α-cell specification has been investigated, its role in maintaining α-cell identity has yet to be explored. To study this later role of Arx, we have generated mice in which the Arx gene has been ablated specifically in glucagon-producing α-cells. Lineage-tracing studies and immunostaining analysis for endocrine hormones demonstrate that ablation of Arx in neonatal α-cells results in an α-to-β-like conversion through an intermediate bihormonal state. Furthermore, these Arx-deficient converted cells express β-cell markers including Pdx1, MafA, and Glut2. Surprisingly, short-term ablation of Arx in adult mice does not result in a similar α-to-β-like conversion. Taken together, these findings reveal a potential temporal requirement for Arx in maintaining α-cell identity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app