COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Corneal resistance to shear force after UVA-riboflavin cross-linking.

PURPOSE: We evaluated whether UVA-riboflavin collagen cross-linking (CXL) increases transverse stromal shear moduli ex vivo, whether the shear moduli are greater in the anterior compared to the posterior stroma, and whether the shear moduli are affected by CXL.

METHODS: The resistance to unidirectional transverse shear of human (n = 18) and porcine (n = 42) corneas was measured in a custom engineered biaxial biomechanical setup at different hydrations. The corneas were separated into untreated, riboflavin solution-treated, and CXL-treated groups. The depth dependency of shear moduli within groups was assessed in femtosecond laser cut sheets. Dry weights were obtained for solids correction.

RESULTS: In porcine full-thickness buttons and 300 μm anterior sheets, a significantly increased unidirectional transverse shear modulus was detected in riboflavin-treated and CXL-treated groups compared to the respective untreated groups. There was no significant difference in shear modulus between riboflavin- and CXL-treated groups. In all groups, the shear moduli were greater in the anterior sheets compared to posterior sheets. Similar results were detected in human corneas.

CONCLUSIONS: A method for unidirectional transverse shear resistance measurement was developed. The shear moduli were greater in the anterior compared to the posterior sheets. Increase in shear moduli was observed in the riboflavin and CXL groups compared to the untreated group, indicating that the immediate effects of the riboflavin or CXL treatment may be due partly to ground substance/dextran-5-phosphate interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app