Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

AAV8 induces tolerance in murine muscle as a result of poor APC transduction, T cell exhaustion, and minimal MHCI upregulation on target cells.

Molecular Therapy 2014 January
Following gene transfer of adeno-associated virus 2/8 (AAV2/8) to the muscle, C57BL/6 mice show long-term expression of a nuclear-targeted LacZ (nLacZ) transgene with minimal immune activation. Here, we show that pre-exposure to AAV2/8 can also induce tolerance to the more immunogenic AAV2/rh32.33 vector, preventing otherwise robust T-cell activation and allowing stable transgene expression. Depletion and adoptive transfer studies showed that a suppressive factor was not sufficient to account for AAV2/8-induced tolerance, whereas further characterization of the T-cell population showed upregulation of the exhaustion markers PD1, 2B4, and LAG3. Furthermore, systemic administration of Toll-like receptor (TLR) ligands at the time of AAV2/rh32.33-administration broke AAV2/8-induced tolerance, restoring T-cell activation and β-gal clearance. As such, AAV2/8 transduction appears to lack the inflammatory signals necessary to prime a functional cytotoxic T-cell response. Inadequate T-cell priming could be explained upstream by AAV2/8's poor transduction and activation of antigen-presenting cells (APCs). Immunohistochemical analysis indicates that AAV2/8 transduction also fails to upregulate major histocompatibility complex class I (MHCI) expression on the surface of myocytes, rendering transduced cells poor targets for T-cell-mediated destruction. Overall, AAV2/8-induced tolerance in the muscle is multifactorial, spanning from poor APC transduction and activation to the subsequent priming of functionally exhausted T-cells, while simultaneously avoiding upregulation of MHCI on potential targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app