JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks.

Unraveling the structure of complex biological networks and relating it to their functional role is an important task in systems biology. Here we attempt to characterize the functional organization of the large-scale metabolic networks of three microorganisms. We apply flux balance analysis to study the optimal growth states of these organisms in different environments. By investigating the differential usage of reactions across flux patterns for different environments, we observe a striking bimodal distribution in the activity of reactions. Motivated by this, we propose a simple algorithm to decompose the metabolic network into three subnetworks. It turns out that our reaction classifier, which is blind to the biochemical role of pathways, leads to three functionally relevant subnetworks that correspond to input, output, and intermediate parts of the metabolic network with distinct structural characteristics. Our decomposition method unveils a functional bow-tie organization of metabolic networks that is different from the bow-tie structure determined by graph-theoretic methods that do not incorporate functionality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app