Add like
Add dislike
Add to saved papers

The inositol monophosphatase All2917 (IMPA1) is involved in osmotic adaptation in Anabaena sp. PCC7120.

Inositol monophosphatase (IMPase; EC 3.1.3.25) acts at the last step in the inositol biosynthesis pathway by hydrolysing inositol-1-phosphate into inositol. In this study, an IMPase encoding gene, all2917 from Anabaena sp. PCC7120, was characterized. We found that All2917 exhibits a specific activity on inositol-1-phosphate, in a typical Mg(2+) -dependent, Li(+) -sensitive manner. The deletion of all2917 in Anabaena made the cells more sensitive to osmotic stress caused by sucrose or sorbitol, while its overexpression led to an increased resistance to such stress. Consistent with these phenotypes, the transcription of all2917 was significantly upregulated upon the sucrose-mediated osmotic stress. Phylogenic analysis using 134 IMPase homologues from 36 cyanobacterial strains shows that members of IMPase family form three major distinct clades, suggesting that multiple copies of IMPase family proteins have been maintained in Cyanobacteria during a long history of evolution, and they may play important roles in cyanobacterial physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app