JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Neurophysiology of juvenile myoclonic epilepsy.

Juvenile myclonic epilepsy (JME) can be firmly diagnosed by a careful interview of the patient focusing on the seizures and by the EEG with the help, if necessary, of long-term video-EEG monitoring using sleep and/or sleep deprivation. Background activity is normal. The interictal EEG shows diffuse or generalized spike-wave (SW) and polyspike-wave (PSW) discharges. In some patients, non-specific changes or misleading features such as focal changes are found. Changes are mostly seen at sleep onset and at awakening. Provoked awakenings are more likely to activate interictal paroxysmal abnormalities than spontaneous awakenings. The presence of a photoparoxysmal response with or without myoclonic jerks (MJ) is common (30% of the cases). Myoclonic jerks are associated with a discharge of fast, irregular, generalized PSWs that predominate anteriorly. Myoclonic jerks appear to be associated with rhythmic EEG (spike) potentials at around 20Hz. These frequencies are in the range of movement-related fast sensorimotor cortex physiological rhythms. The application of jerk-locked averaging technique has provided findings consistent with a cortical origin of MJ. Paired TMS (transcranial magnetic stimulation) studies showed a defective intracortical inhibition, due to impaired GABA-A mediated mechanisms. In this review, we present the EEG characteristics of JME with particular emphasis on the pathophysiology of MJ and on the role of sleep deprivation on interictal and ictal changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app