JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation.

Developmental Cell 2013 June 25
The Cubitus interruptus (Ci)/Gli family of transcription factors can be degraded either completely or partially from a full-length form (Ci155/Gli(FL)) to a truncated repressor (Ci75/Gli(R)) by proteasomes to mediate Hedgehog (Hh) signaling. The mechanism by which proteasomes distinguish ubiquitinated Ci/Gli to carry out complete versus partial degradation is not known. Here, we show that Ter94 ATPase and its mammalian counterpart, p97, are involved in processing Ci and Gli3 into Ci75 and Gli3(R), respectively. Ter94 regulates the partial degradation of ubiquitinated Ci by Cul1-Slimb-based E3 ligase through its adaptors Ufd1-like and dNpl4. We demonstrate that Cul1-Slimb-based E3 ligase, but not Cul3-Rdx-based E3 ligase, modifies Ci by efficient addition of K11-linked ubiquitin chains. Ter94(Ufd1-like/dNpl4) complex interacts directly with Cul1-Slimb, and, intriguingly, it prefers K11-linked ubiquitinated Ci. Thus, Ter94 ATPase and K11-linked ubiquitination in Ci contribute to the selectivity by proteasomes for partial degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app