JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production.

Oxidative stress induced by reactive oxygen species (ROS) plays crucial roles in a wide range of physiological processes and is also implicated in various diseases, including cancer, chronic inflammatory diseases, and neurodegenerative disorders. Among the various ROS, hypochlorous acid (HOCl) plays as a powerful microbicidal agent in the innate immune system. The regulated production of microbicidal HOCl is required for the host to control the invading microbes. However, as a result of the highly reactive and diffusible nature of HOCl, its uncontrolled production may lead to an adverse effect on host physiology. Because of its biological importance, many efforts have been focused on developing selective fluorescent probes to image ROS. However, it is still challenging to design a fluorescent probe with exclusive selectivity toward a particular member of ROS. In the current work, we designed FBS as a new fluorescent HOCl probe which has high selectivity, sensitivity, and short response time in a broad range of pH. Compared with other sensors, the "dual-lock" structure of FBS has an advantage of eliminating interferences from other ROS/RNS. Importantly, we further showed that our HOCl probe could be applied for the in vivo imaging of physiological HOCl production in the mucosa of live animals. This probe provides a promising tool for the study of HOCl production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app