JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proposing a two-level stochastic model for epileptic seizure genesis.

By assuming the brain as a multi-stable system, different scenarios have been introduced for transition from normal to epileptic state. But, the path through which this transition occurs is under debate. In this paper a stochastic model for seizure genesis is presented that is consistent with all scenarios: a two-level spontaneous seizure generation model is proposed in which, in its first level the behavior of physiological parameters is modeled with a stochastic process. The focus is on some physiological parameters that are essential in simulating different activities of ElectroEncephaloGram (EEG), i.e., excitatory and inhibitory synaptic gains of neuronal populations. There are many depth-EEG models in which excitatory and inhibitory synaptic gains are the adjustable parameters. Using one of these models at the second level, our proposed seizure generator is complete. The suggested stochastic model of first level is a hidden Markov process whose transition matrices are obtained through analyzing the real parameter sequences of a seizure onset area. These real parameter sequences are estimated from real depth-EEG signals via applying a parameter identification algorithm. In this paper both short-term and long-term validations of the proposed model are done. The long-term synthetic depth-EEG signals simulated by this model can be taken as a suitable tool for comparing different seizure prediction algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app