Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation.

Brain Research 2013 July 20
The damage of white matter, primarily myelinated fibers, in the central nervous system (CNS) of temporal lobe epilepsy (TLE) patients has been recently reported. However, limited data exist addressing the types of changes that occur to myelinated fibers inside the hippocampus as a result of TLE. The current study was designed to examine this issue in a lithium-pilocarpine rat model. Investigated by electroencephalography (EEG), Gallyas silver staining, immunohistochemistry, western blotting, transmission electron microscopy, and stereological methods, the results showed that hippocampal myelinated fibers of the epilepsy group were degenerated with significantly less myelin basic protein (MBP) expression relative to those of control group rats. Stereological analysis revealed that the total volumes of hippocampal formation, myelinated fibers, and myelin sheaths in the hippocampus of epilepsy group rats were decreased by 20.43%, 49.16%, and 52.60%, respectively. In addition, epilepsy group rats showed significantly greater mean diameters of myelinated fibers and axons, whereas the mean thickness of myelin sheaths was less, especially for small axons with diameters from 0.1 to 0.8µm, compared to control group rats. Finally, the total length of the myelinated fibers in the hippocampus of epilepsy group rats was significantly decreased by 56.92%, compared to that of the control group, with the decreased length most prominent for myelinated fibers with diameters from 0.4 to 0.8µm. This study is the first to provide experimental evidence that the integrity of hippocampal myelinated fibers is negatively affected by inducing epileptic seizures with pilocarpine, which may contribute to the abnormal propagation of epileptic discharge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app