Add like
Add dislike
Add to saved papers

The cannabinoid Δ(9)-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity.

BACKGROUND: Cannabinoid type-1 (CB1) receptor inverse agonists improve type 2 diabetes and dyslipidaemia but were discontinued due to adverse psychiatric effects. Δ(9)-Tetrahydrocannabivarin (THCV) is a neutral CB1 antagonist producing hypophagia and body weight reduction in lean mice. We investigated its effects in dietary-induced (DIO) and genetically (ob/ob) obese mice.

METHODS: We performed two dose-ranging studies in DIO mice; study 1: 0.3, 1, 2.5, 5 and 12.5 mg kg(-1), oral twice daily for 30 days and study 2: 0.1, 0.5, 2.5 and 12.5 mg kg(-1), oral, once daily for 45 days. One pilot (study 3: 0.3 and 3 mg kg(-1), oral, once daily) and one full dose-ranging (study 4: 0.1, 0.5, 2.5 and 12.5 mg kg(-1), oral, once daily) studies in ob/ob mice for 30 days. The CB1 inverse agonist, AM251, oral, 10 mg kg(-1) once daily or 5 mg kg(-1) twice daily was used as the positive control. Cumulative food and water intake, body weight gain, energy expenditure, glucose and insulin levels (fasting or during oral glucose tolerance tests), plasma high-density lipoprotein and total cholesterol, and liver triglycerides were measured. HL-5 hepatocytes or C2C12 myotubes made insulin-resistant with chronic insulin or palmitic acid were treated with 0, 1, 3 and 10 μM THCV or AM251.

RESULTS: THCV did not significantly affect food intake or body weight gain in any of the studies, but produced an early and transient increase in energy expenditure. It dose-dependently reduced glucose intolerance in ob/ob mice and improved glucose tolerance and increased insulin sensitivity in DIO mice, without consistently affecting plasma lipids. THCV also restored insulin signalling in insulin-resistant hepatocytes and myotubes.

CONCLUSIONS: THCV is a new potential treatment against obesity-associated glucose intolerance with pharmacology different from that of CB1 inverse agonists/antagonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app