Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode.

A novel and selective electrochemical sensor was successfully developed for the determination of sucrose by integrating electropolymerization of molecularly imprinted polymer with multiwall carbon nanotubes. The sensor was prepared by electropolymerizing of o-phenylenediamine in the presence of template, sucrose, on a multiwall carbon nanotube-modified glassy carbon electrode. The sensor preparation conditions including sucrose concentration, the number of CV cycles in the electropolymerization step, pH of incubation solution, extraction time of template from the imprinted film and the incubation time were optimized using response surface methodology (RSM). A mixture of acetonitrile/acetic acid was used to remove the template. Hexacyanoferrate(II) was used as a probe to characterize the sensor using electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. Capturing of sucrose by the modified electrode causes decreasing the response of the electrode to hexacyanoferrate(II). Calibration curve was obtained in the sucrose concentration range of 0.01-10.0 mmol L(-1) with a limit of detection 3 μmol L(-1). This sensor provides an efficient way for eliminating interferences from compounds with similar structures to sucrose. The sensor was successfully used to determine sucrose in sugar beet juices with satisfactory results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app